Upcoming Conferences

Come hang out with me at California Math Council’s North and South conferences in November and December.

CMC-South. Palm Springs, CA. November 15-16. I’m going to describe how “rich tasks” and “bland tasks” both fail our students. And I’m going to do it with 15 students on a stage in a live lesson demonstration. Let’s gooo! [register]

CMC-North. Pacific Grove, CA. December 6-8. I’ll share some of the ways my colleagues and I at Desmos are designing for belonging in math class, specifically how we try to expand the list of who counts as a mathematician and what counts as mathematics. [register]

Fave Five

Five of my favorite articles from the last month.

“If something cannot go on forever, it will stop.”

Economist Herb Stein’s quote ran through my head while I read The Hustle’s excellent analysis of the graphing calculator market. This cannot go on forever.

Every new school year, Twitter lights up with caregivers who can’t believe they have to buy their students a calculator that’s wildly underpowered and wildly overpriced relative to other consumer electronics.

tweet text: "Hello my 8th grade son is required to have a TI-84 for school but we just cannot afford one- do you have any programs you could recommend"

The Hustle describes Texas Instruments as having “a near-monopoly on graphing calculators for nearly three decades.” That means that some of the students who purchased TI calculators as college students are now purchasing calculators for their own kids that look, feel, act and (crucially) cost largely the same. Imagine they were purchasing their kid’s first car and the available cars all looked, felt, acted, and cost largely the same as their first car. This cannot go on forever.

As the chief academic officer at Desmos, a competitor of Texas Instruments calculators, I was already familiar with many of The Hustle’s findings. Even still, they illuminated two surprising elements of the Texas Instruments business model.

First, the profit margins.

One analyst placed the cost to produce a TI-84 Plus at around $15-20, meaning TI sells it for a profit margin of nearly 50% — far above the electronics industry’s average margin of 6.7%.

Second, the lobbying.

According to Open Secrets and ProPublica data, Texas Instruments paid lobbyists to hound the Department of Education every year from 2005 to 2009 — right around the time when mobile technology and apps were becoming more of a threat.

Obviously the profits and lobbying are interdependent. Rent-seeking occurs when companies invest profits not into product development but into manipulating regulatory environments to protect market share.

I’m not mad for the sake of Desmos here. What Texas Instruments is doing isn’t sustainable. Consumer tech is getting so good and cheap and our free alternative is getting used so widely that regulations and consumer demand are changing quickly.

Another source told The Hustle that graphing calculator sales have seen a 15% YoY decline in recent years — a trend that free alternatives like Desmos may be at least partially responsible for.

You’ll find our calculators embedded in over half of state-level end-of-course exams in the United States, along with the International Baccalaureate MYP exam, the digital SAT and the digital ACT.

I am mad for the sake of kids and families like this, though.

“It basically sucks,” says Marcus Grant, an 11th grader currently taking a pre-calculus course. “It was really expensive for my family. There are cheaper alternatives available, but my teacher makes [the TI calculator] mandatory and there’s no other option.”

Teachers: it was one thing to require plastic graphing calculators calculators when better and cheaper alternatives weren’t available. But it should offend your conscience to see a private company suck 50% profit margins out of the pockets of struggling families for a product that is, by objective measurements, inferior to and more expensive than its competitors.

BTW. This is a Twitter-thread-turned-blog-post. If you want to know how teachers justified recommending plastic graphing calculators, you can read my mentions.

Humanizing Math Class Means Teaching Math Like The Humanities

Here are a couple of terrifying tweets from my summer.

I saw those tweets and had to sit back and collect myself.

That’s because I know how well I’m served by my knowledge of mathematics, how that knowledge helps me find value in early student thinking, how that knowledge helps me connect and build on thoughts from different students that, without that knowledge, might seem totally unrelated.

This isn’t a critique of those two newly drafted math teachers at all. Most of my horror here results from the thought of being drafted to teach history after a career teaching math. So what can they do?

You’ll find lots of people in those threads recommending resources and curricula. But resources and curricula are only as good as the teacher using them. A developing teacher can make a good resource bad and an expert teacher can make a bad resource good. (This is why John Mason prefers to talk about “rich teaching” instead of “rich tasks.”)

So my own advice is for these teachers trained in the humanities to focus on their teaching, not the resources or curricula.

Specifically, I hope they’ll resist the idea that math should be taught any differently than the humanities. I hope they’ll resist the idea that only the humanities deal in subjectivity, argumentation, and personal interpretation, while math represents objective, inarguable, abstract truth.

Math is only objective, inarguable, and abstract for questions defined so narrowly they’re almost useless to students, teachers, and the world itself.

find the volume of an abstract compound shape where all side lengths are known

In social studies, an analogous question might ask students to recall the date of the Louisiana Purchase or the name of the king who signed the Magna Carta – questions that are so abstracted from their context, so narrowly defined, and so objective that they make no contribution to a student’s ability to think historically.

The National Council for the Social Studies describes what’s necessary for students of social studies:

Students learn to assess the merits of competing arguments, and make reasoned decisions that include consideration of the values within alternative policy recommendations. [..] Through discussions, debates, the use of authentic documents, simulations, research, and other occasions for critical thinking and decision making, students learn to apply value-based reasoning when addressing problems and issues.

All of which rhymes perfectly with recommendations from the National Council of Teachers of Mathematics:

Teaching mathematics with high expectations for all students in mathematical reasoning, sense making, and problem solving invites students to learn to identify assumptions, develop arguments, and make connections within mathematical topics and to other contexts and disciplines.

Teaching math like the humanities asks us to:

  • Broaden the scope of the problems we assign. We can always narrow the scope in collaboration with students but the opposite isn’t true. Students don’t have the opportunity to “identify assumptions,” for example, if we pre-assume every detail in the problem.
  • Focus on mathematical ideas that are big enough to be understood in different ways. Ask students to make claims that demand to be argued and interpreted rather than evaluated by an authority for correctness.
  • Celebrate novel student contributions to mathematics. History is made every day and so is mathematics. If our students leave our classes this year without understanding that they have had made unique and original contributions to how humans think mathematically, we have defined “mathematics” too narrowly. (For example, someone just decided to call this shape a “golygon.” If that person has the right to notice and name things, then so do your students.)

Instead of the worksheet above, show your students this video of a pallet of bricks and then immediately hide it.

bricks stacked in an interesting way on a pallet

“Does anybody have a guess about how many bricks we saw up there?”

“Did anybody notice any features about the bricks that might help us figure out exactly how many bricks we saw there?”

“Let’s look at the video again. Okay, what’s the most efficient way you can think to figure out the number of bricks.”

“How were you thinking about the number of bricks you figured out? What assumptions did you make?”

“Someone else got a different answer from you. How do you think they thinking about the number of bricks?”

“Here’s the number of bricks. What’s another question we could ask now?”

These questions rhyme with the kinds of questions you’d hear in a productive, engaging humanities classroom, questions which are no less possible in mathematics!

Humanizing math class means teaching like the humanities. And if you’re joining us from the humanities, please be generous with your pedagogy. We need all of it.

BTW: This is my contribution to the Virtual Conference on Humanizing Mathematics, a fantastic learning opportunity hosted by Hema Khodai and Sam Shah through the month of August 2019.

The Limits of “Just Teaching Math”

If I ever imagine that I can see the edges of teaching, if I ever tell myself that I’m apprehending all of its angles and dimensions, I just call up my friends Sarah Kingston, Ben Spencer, and Megan Snyder at Beach Elementary School and ask them if they’ll let me learn with some elementary school-aged children, an experience which corrects my vision for months.

Most recently, they let me think about time with some second graders – the youngest kids I’ve ever taught and probably ever met, I can’t be sure – and especially how to tell time on an analog clock.

My goal in these experiences is always to find areas of agreement between the teaching of different age groups and different areas of math. Whether I’m learning about time with second graders or about polynomial operations with high schoolers or about teaching with math teachers, I’m asking myself, what’s going on here that crosses all of those boundaries, not one of which is ever drawn as sharply as I first think.

One way teaching second grade is different from teaching high school.

The odds of me stepping on a child go way up, for one.

For another, these students were inexhaustible. Their default orientation towards me and my ideas was rapt engagement and an earnest, selfless desire to improve my ideas with stories about their friends, their pets, and their families.

My tools for curriculum and instruction were forged by students who communicated to me that “none of this matters” and “I can’t do it even if it did.” Those tools seemed less necessary here. Instead, I needed tools for harnessing their energy and I learned lots of them from my friends at Beach Elementary – popsicle sticks for group formation, procedures for dismissing students gradually instead of simultaneously, silent signals for agreement instead of loud ones, etc.

Even still, with these second graders, I tried to problematize conventions for telling time, just as I would with high school students. I asked students to tell me what bad thing might happen if we didn’t know how to tell time, and they told me about being late, about missing important events, about not knowing when they should fall asleep and accidentally staying awake through the night!

16 clock faces

I tried to elicit and build on their early language around time by playing a game of Polygraph: Clocks together. I told them I had picked a secret clock from that array and told them I would answer “yes” or “no” to any question they asked me. Then they played the game with each other on their computers.

One student asked if she could play the game at home, a question which my years of teaching high school students had not prepared me to hear.

One way teaching second grade is the same as teaching high school.

I saw in second grade the students I would eventually teach in high school. Students who were anxious, who shrunk from my questions, either wishing to be invisible or having been invisibilized. Other students stretched their hands up on instinct at the end of every question, having decided already that the world is their friend.

Those students weren’t handed those identities in their ninth grade orientation packets. They and their teachers have been cultivating them for years!

Rochelle Gutierrez calls teachers “identity workers,” a role I understood better after just an hour teaching young students.

All mathematics teachers are identity workers, regardless of whether they consider themselves as such or not. They contribute to the identities students construct as well as constantly reproduce what mathematics is and how people might relate to it (or not).

I have wanted not to be an identity worker, to just be a math worker, because the stakes of identity work are so high. (Far better to step on a child’s foot than to step on their sense of their own value.) We wield that power so poorly, communicating to students with certain identities at astonishingly early ages – especially our students who identify as Latinx, Black, and Indigenous – that we didn’t construct school and math class for their success.

I have wanted to give up that power over student identities and just teach math, but as Gutierrez points out, students are always learning more than math in math class.

My team and I at Desmos are forging new tools for curriculum and instruction and we’re starting to evaluate our work not just by what those tools teach students about mathematics but also by what they teach students about themselves.

It isn’t enough for students to use our tools to discover the value of mathematics. We want them to discover and feel affirmed in their own value, the value of their peers, and the value of their culture.

We’ve enlisted consultants to support us in that work. We’re developing strategic collaborations with groups who are thoughtful about the intersection of race, identity, and mathematics. A subset of the company currently participates in a book club around Zaretta Hammond’s Culturally Responsive Teaching and the Brain.

Before undertaking that work, I’d tell you that my favorite part of teaching Polygraph with second graders is how deftly it reveals the power of mathematical language. Now I’ll tell you my favorite part is how it helps students understand the power of their own language.

“Is your clock a new hour?” a second-grade student asked me about my secret clock and before answering “yes” I made sure the class heard me tell that student that they had created something very special there, a very interesting question using language that was uniquely theirs, that was uniquely valuable.