Category: classroomaction

Total 43 Posts

Area Man Who Talks a Lot About Teaching Teaches His First Full Day in >10 Years

Tweet from Dan: My local district had the fantastic idea to adopt the  @Desmos  curriculum, a side benefit (?) of which is I'm going to bug them to let me sub and no one needs to make a sub plan!

I have taught demo and observational classes regularly since I left full-time teaching but yesterday was the first time I taught every class for the day. Leaving myself some quick notes & impressions.

  • The setup. I taught four classes of students in three different rooms. Plug. Unplug. Plug. Unplug. Plug. Unplug. This works for me. I am the Mirrorworld Sarah Carter with how little attention I generally pay to the physical environment of the classroom. Another growth area for me, but great for modular subbing.
  • Teaching is tiring. The pace doesn’t quit. I brought a thermos of coffee with me and brought every drop of it home. I also forgot that you absolutely abuse your vocal cords for the first few days of teaching. Then they realize you’re seriously going to talk this much throughout the day. They relent, and you’re set.
  • Wearing masks all day. The best of a bunch of bad options, I guess, but I didn’t like it! Beyond the discomfort, they really shrink down the non-verbal communication channels. Hard to get a vibe check on anybody! It was also hard to hear and understand quieter students.
  • Prep time. I have taught three courses before and never loved the prep time that schedule required. Up until the day I left the classroom, I spent multiple hours outside of class every day creating materials and planning lessons for the next day. Not to plug our curriculum too hard here, but it was unreal how it let me spend so little time planning for subbing overall and how I was able to spend the majority of that time thinking about facilitating the lesson and all the ways students would develop their ideas about math throughout—teaching in a word! Whether or not it’s our curriculum, I don’t know, but every teacher deserves that kind of experience IMO.
  • Interacting with the youth. From my notes: “How is everything I’m saying an innuendo somehow?” Is there some kind of almanac I can use to keep myself up to date here or something?
  • What our plan for AirPods, please? Or even corded headphones? Music in class? Are we just going with this? One ear only? Only during classwork? Is this one of those battles we just aren’t picking these days?
  • I love the energy of a school. Love it. Where else can you find so many different people all growing so dramatically in every conceivable way? Where else do you get to work with such a huge cross-section of society as your peers in a hierarchy that’s nearly flat, everyone relying on one another in crucial ways, but also accountable and trusted individually with their own pieces of the overall mission.
  • Next time. My interest in subbing divided into roughly 25% field-testing our program, 25% giving some local teacher friends a break, and 50% because teaching is unique among all other jobs I have ever had. It’s only in teaching that someone with my particular interests and aptitudes has the chance to help people understand their immense value and power in a moment (being a teenager) where they are very actively sorting out the question “What is my value?” in a context (math class) where they often feel like the answer is “not much.” In just one day, so many students communicated to me that they aren’t any good at math and they were absolutely incorrect every time. “You don’t know how to calculate the angles in that diagram? Fine—but which ones look the same? See—your eyes are mathematically smart. That’s smart.” Or “You don’t know the scale factor. Fine—but what’s it between? Between 2 and 3? How’d you know that? Okay let’s call it two-ish for now. That’s good math.” There’s so much I don’t know how to do in this world, but I know how to do that. I have only ever created human connections of that sort in math classrooms. Nowhere else. For now, I’m happy I get to create tools and experiences that help other teachers create those connections. But I think I know what I was made to do and it isn’t obvious to me how long I’ll be able to go on not doing that.

The Limits of “Just Teaching Math”

If I ever imagine that I can see the edges of teaching, if I ever tell myself that I’m apprehending all of its angles and dimensions, I just call up my friends Sarah Kingston, Ben Spencer, and Megan Snyder at Beach Elementary School and ask them if they’ll let me learn with some elementary school-aged children, an experience which corrects my vision for months.

Most recently, they let me think about time with some second graders — the youngest kids I’ve ever taught and probably ever met, I can’t be sure — and especially how to tell time on an analog clock.

My goal in these experiences is always to find areas of agreement between the teaching of different age groups and different areas of math. Whether I’m learning about time with second graders or about polynomial operations with high schoolers or about teaching with math teachers, I’m asking myself, what’s going on here that crosses all of those boundaries, not one of which is ever drawn as sharply as I first think.

One way teaching second grade is different from teaching high school.

The odds of me stepping on a child go way up, for one.

For another, these students were inexhaustible. Their default orientation towards me and my ideas was rapt engagement and an earnest, selfless desire to improve my ideas with stories about their friends, their pets, and their families.

My tools for curriculum and instruction were forged by students who communicated to me that “none of this matters” and “I can’t do it even if it did.” Those tools seemed less necessary here. Instead, I needed tools for harnessing their energy and I learned lots of them from my friends at Beach Elementary — popsicle sticks for group formation, procedures for dismissing students gradually instead of simultaneously, silent signals for agreement instead of loud ones, etc.

Even still, with these second graders, I tried to problematize conventions for telling time, just as I would with high school students. I asked students to tell me what bad thing might happen if we didn’t know how to tell time, and they told me about being late, about missing important events, about not knowing when they should fall asleep and accidentally staying awake through the night!

16 clock faces

I tried to elicit and build on their early language around time by playing a game of Polygraph: Clocks together. I told them I had picked a secret clock from that array and told them I would answer “yes” or “no” to any question they asked me. Then they played the game with each other on their computers.

One student asked if she could play the game at home, a question which my years of teaching high school students had not prepared me to hear.

One way teaching second grade is the same as teaching high school.

I saw in second grade the students I would eventually teach in high school. Students who were anxious, who shrunk from my questions, either wishing to be invisible or having been invisibilized. Other students stretched their hands up on instinct at the end of every question, having decided already that the world is their friend.

Those students weren’t handed those identities in their ninth grade orientation packets. They and their teachers have been cultivating them for years!

Rochelle Gutierrez calls teachers “identity workers,” a role I understood better after just an hour teaching young students.

All mathematics teachers are identity workers, regardless of whether they consider themselves as such or not. They contribute to the identities students construct as well as constantly reproduce what mathematics is and how people might relate to it (or not).

I have wanted not to be an identity worker, to just be a math worker, because the stakes of identity work are so high. (Far better to step on a child’s foot than to step on their sense of their own value.) We wield that power so poorly, communicating to students with certain identities at astonishingly early ages — especially our students who identify as Latinx, Black, and Indigenous — that we didn’t construct school and math class for their success.

I have wanted to give up that power over student identities and just teach math, but as Gutierrez points out, students are always learning more than math in math class.

My team and I at Desmos are forging new tools for curriculum and instruction and we’re starting to evaluate our work not just by what those tools teach students about mathematics but also by what they teach students about themselves.

It isn’t enough for students to use our tools to discover the value of mathematics. We want them to discover and feel affirmed in their own value, the value of their peers, and the value of their culture.

We’ve enlisted consultants to support us in that work. We’re developing strategic collaborations with groups who are thoughtful about the intersection of race, identity, and mathematics. A subset of the company currently participates in a book club around Zaretta Hammond’s Culturally Responsive Teaching and the Brain.

Before undertaking that work, I’d tell you that my favorite part of teaching Polygraph with second graders is how deftly it reveals the power of mathematical language. Now I’ll tell you my favorite part is how it helps students understand the power of their own language.

“Is your clock a new hour?” a second-grade student asked me about my secret clock and before answering “yes” I made sure the class heard me tell that student that they had created something very special there, a very interesting question using language that was uniquely theirs, that was uniquely valuable.

My Month Teaching Summer School & The Curse of Content Knowledge

I begged some middle and high school teachers in Berkeley, CA, to let me teach summer school with them this month.

Three reasons why:

  • I knew some of my professional muscles were atrophying, and I can only strengthen them in the classroom.
  • I knew our ideas at Desmos benefit enormously when we test them regularly in classrooms.
  • I knew that for me (and for everyone on my team at Desmos, FWIW) classroom teaching is psychologically satisfying in ways that are impossible to reproduce anywhere except the classroom.

So I rotated between four classes, helping high school students with mathematics that was at their grade level and below, for the most part using Desmos activities.

This was my longest continuous stretch of classroom teaching since I left classroom teaching nearly ten years ago and I learned a lot.

Two truths in particular would have been very hard for me to understand ten years ago.

One: content knowledge is such a curse.

The more math I understand and the better I understand it, the more likely I am to evaluate student ideas for how well they align with mine.

“Which one doesn’t belong?” we asked the class on an opener.

  1. 5x – 5 = 20
  2. 5x = 25
  3. 5x – 15 = 10
  4. -5x + 10 = -5

One student said that B didn’t belong because “it’s the only one with two variables.”

I knew this was formally and factually incorrect. 25 isn’t a variable. It became very tempting in that moment to say, “Oh nice — but 25 isn’t a variable. Does anybody have any other reasons why B doesn’t belong?”

Instead, the teacher and I called a time out and talked in front of the class about the sense the student had made, rather than the sense she hadn’t yet made.

“There are two of something in B. Does anybody know a name for it?”

My content knowledge encourages me to evaluate student ideas for their alignment to my level of understanding rather than appreciating the student’s level of understanding and building from there.

You can see that tendency in some of the responses to this tweet:

Those students understood the absolute difference between the denominator and the numerator (two shots missed) but not the relative difference (two shots missed when you took 38 is better than when you took 20). They needed more experience at a particular level of mathematics.

Perhaps you and I both know a formal algorithm that would help us get an answer to this question (eg. calculating common denominators; calculating a percentage) but simply explaining that algorithm would conceal some very necessary mathematical work under the attractive sheen of correctness. Explaining that formal algorithm would also tell students that “The informal sense you have made of mathematics so far isn’t even worth talking about. We need to raze it entirely and rebuild a different kind of sense from the foundation up.”

I blundered into those moments periodically in my month teaching summer school, most often when I understood my own ideas better than I understood the ideas a student was offering me and time was running short. In each instance, I could tell I was contributing to a student’s sense that her ideas weren’t worth all that much and that math can’t be figured out without the help of a grownup, if even then.

Two: content knowledge is such a blessing.

I was able to convert my mathematical content knowledge from a curse to a blessing every time I convinced myself that a student’s ideas were more interesting to me than my own and I used my content knowledge to help me understand her ideas.

(Shout out to grad school right there. If nothing else, those five years cultivated my curiosity about student ideas.)

Here is a truth about my best teaching I learned last month in summer school:

Make yourself more interested in the sense that your students are making rather than the sense they aren’t making. Celebrate and build on that sense.

Celebrate it because too many students feel stupid and small in math class (especially in summer school) and they shouldn’t. The teacher time out helped us understand the student’s thinking, but try to understand what it’s like for a student to hear the big people in the room take her ideas so seriously that they’d bring the class to a stop to discuss them.

Build on that sense because it’s more effective for learning than starting from scratch. This is why analogies are so useful in conversation. Analogies start from what someone already knows and build from there.

I don’t think I understood that truth when I left the classroom a decade ago. My content knowledge was high (though in many ways not as high as I thought) and I was less curious in understanding my students’ ideas than I was in the attractive sheen of correctness.

All of which makes the real tragedy of my month teaching summer school the fact that I’ll likely have to wait until next summer to put this experience to work again.

BTW. Max Ray-Riek’s talk 2 > 4 is a beautiful and practical encapsulation of these ideas. Watch it ASAP.

Featured Comments

Ann Arden:

After eighteen years, it’s becoming very apparent that I’m not very helpful as a teacher if I can’t/don’t understand the way a student is making sense of something.

Pam Rawson:

Whenever I find myself going down the road of trying to “fix” a student’s thinking, I pause and then ask a question like, “What do you mean by …” or “Can you say more about …”

Annie Adams:

This past year, I was only teaching our refugee population in middle school. Since moving away from California, I hadn’t really encountered the needs of language learners, and people with interruptions in their education in a while. My muscles, too, have atrophyed. Luckily, I have spent many hours learning from the #iteachmath community, using visuals to illicit information, and subtracting the clutter in problems to open up scenarios for discussion. I thought this would be great, because I just wanted then to know they can solve problems. I learned so much about what I did not know about student needs, and about how students approach problems that are unfamiliar to them, when they can’t express themselves fully, and when they are trying to build on the few things that are familiar in their toolkit. This empathy with our students is something we all do daily, but naming it and focusing in it, rather than our own agenda, is the complicated and powerful design of teaching.

Marc Garneau:

Your second truth is where I applied my most energy. I put in way more time, most of my time, into figuring out what sense they were making, and helping them to realize the same for themselves. For most, it was at least half-way through, if not three-fourths, for them to begin seeing what my goal for them was. They began caring for their learning, and caring for each others’ learning!

Rough-Draft Thinking & Bucky the Badger

Student work on the Bucky Badger problem.

Many thanks to Ben Spencer and his fifth-grade students at Beach Elementary for letting me learn with them on Friday.

In most of my classroom visits lately, I am trying to identify moments where the class and I are drafting our thinking, where we aren’t looking to reach an answer but to grow more sophisticated and more precise in our thinking. Your classmates are an asset rather than an impediment to you in those moments because the questions they ask you and the observations they make about your work can elevate your thinking into its next draft. (Amanda Jansen’s descriptions of Rough-Draft Thinking are extremely helpful here.)

From my limited experience, the preconditions for those moments are a) a productive set of teacher beliefs, b) a productive set of teacher moves, and c) a productive mathematical task — in that order of importance. For example, I’d rather give a dreary task to a teacher who believes one can never master mathematical understanding, only develop it, than give a richer task to a teacher who believes that a successful mathematical experience is one in which the number on the student’s paper matches the number in the answer key.

A productive task certainly helps though. So today, we worked with Bucky the Badger, a task I’d never taught with students before.

Bucky doing pushups.

We learned that Bucky the Badger has to do push-ups every time his football team scores. His push-ups are always the same as the number of points on the board after the score. That’s unfortunate because push-ups are the worst and we should hope to do fewer of them rather than more.

Maybe you have a strong understanding of the relationship between points and push-ups right now but the class and I needed to draft our own understanding of that relationship several times.

The scoreboard for the game. Wisconsin scored 83 points. Indiana scored 20 points.

I asked students to predict how many push-ups Bucky had to perform in total. Some students decided he performed 83, the total score of Bucky’s team at the end of the game. Several other students were mortified at that suggestion. It conflicted intensely with their own understanding of the situation.

I wanted to ask a question here that was interpretive rather than evaluative in order to help us draft our understanding. So I asked, “What would need to be true about Bucky’s world if he performed 83 push-ups in total?” The conversation that followed helped different students draft and redraft their understanding of the context.

They knew from the video that the final score was 83-20. I told them, “If you have everything you need to know about the situation, get to work, otherwise call me over and let me know what you need.”

Not every pair of students wondered these next two questions, but enough students wondered them that I brought them to the entire class’s attention as Very Important Thoughts We Should All Think About:

  • Does the kind of scores matter?
  • Does the order of those scores matter?

I told the students that if the answer to either question was “yes,” that I could definitely get them that information. But I am very lazy, I said, and would very much rather not. So I asked them to help me understand why they needed it.

Do not misunderstand what we’re up to here. The point of the Bucky Badger activity is not calculating the number of push-ups Bucky performed, rather it’s devising experiments to test our hypotheses for both of those two questions above, drafting and re-drafting our understanding of the relationship between points and push-ups. Those two questions both seemed to emerge by chance during the activity, but they contain the activity’s entire point and were planned for in advance.

To test whether or not the kind of scores mattered, we found the total push-ups for a score of 21 points made up of seven 3-point scores versus three 7-point scores. The push-ups were different, so the kind of scores mattered! I acted disappointed here and made a big show of rummaging through my backpack for that information. (For the sake of this lesson, I am still very lazy.) I told them Bucky’s 83 points were composed of 11 touchdowns and 2 field goals.

Again, I said, “If you have everything you need to know about the situation to figure out how many push-ups Bucky did in the game, get on it, otherwise call me over and let me know what you need.” The matter was still not settled for many students.

To test whether or not the order of the scores mattered, one student wanted to find out the number of push-ups for 2 field goals followed by 11 touchdowns and then for 11 touchdowns followed by 2 field goals. Amazing! “That will definitely help us understand if order matters,” I said. “But what is the one fact you know about me?” (Lazy.) “So is there a quicker experiment we could try?” We tried a field goal followed by a touchdown and then a touchdown followed by a field goal. The push-ups were different, so now we knew the order of the scores mattered.

I passed out the listing of the kinds of scores in order and students worked on the least interesting part of the problem: turning given numbers into another number.

I looked at the clock and realized we were quickly running out of time. We discussed final answers. I asked students what they had learned about mathematics today. That’s when a student volunteered this comment, which has etched itself permanently in my brain:

A problem can change while we’re figuring it out. Our ideas changed and they changed the question we were asking.

We had worked on the same problem for ninety minutes. Rather, we worked on three different drafts of the same problem for ninety minutes. As students’ ideas changed about the relationship between push-ups and points, the problem changed, gaining new life and becoming interesting all over again.

Many math problems don’t change while we’re figuring them out. The goal of their authors, though maybe not stated explicitly, is to prevent the problem from changing. The problem establishes all of its constraints, all of its given information, comprehensively and in advance. It tries to account for all possible interpretations, doing its best not to allow any room for any misinterpretation.

But that room for interpretation is exactly the room students need to ask each other questions, make conjectures, and generate hypotheses — actions that will help them create the next draft of their understanding about mathematics.

We need more tasks that include that room, more teacher moves that help students step into it, and more teacher beliefs that prepare us to learn from whatever students do there.

2018 May 23. Amanda Jansen contributes to the category of “productive teacher beliefs”:

Doing mathematics is more than answer-getting.

Everyone’s mathematical thinking can constantly evolve and shift. Continually. There is no end to this.

Everyone’s current mathematical thinking has value and can be built upon.

An important role of teachers is to interpret students’ thinking before evaluating it. Holding off on evaluating and instead engaging in negotiating meaning with students supports their learning. And teacher’s learning.

Everyone learns in the classroom. Teachers are learning about students’ thinking and their thinking about mathematics evolves as they make sense of kids’ thinking.

The list goes on, but I’m reflecting on some of the beliefs that are underlying the ideas in this post.

2018 May 26. Sarah Kingston is a math coach who was in the room for the lesson. She adds teacher moves as well.

A High School Math Teacher’s First Experience Teaching Elementary School

At a workshop in Alameda County last month, I made my standard request for classroom teachers to help me make good on my New Year’s resolution. I assumed all the teachers there taught middle- or high-school so I said yes to every teacher who invited me. Later, I’d find out that one of them taught fourth grade.

As a former high school math teacher, this was NIGHTMARE MATERIAL, Y’ALL.

I mean, what do fourth graders even look like? I’m tall, but do I need to worry about stepping on them? What do they know how to do? Do they speak in complete sentences at that age? Clearly, what I don’t know about little kids could fill libraries.

I survived class today. I used a Graham Fletcher 3-Act task because I’m familiar with that kind of curriculum and pedagogy. (Thanks for the concierge support, Graham.) A few observations about the experience, which, again, I survived:

Children are teenagers are adults. Don’t let me make too much of my one hour of primary education experience, but I was struck hard by the similarities between all the different ages I’ve taught. People of all ages like puzzles. They respond well to the techniques of storytelling. Unless they’re wildly misplaced, they come to your class with some informal understanding of your lesson. They appreciate it when you try to surface that understanding, revoice it, challenge it, and help them formalize it. I handled a nine year-old’s ideas about a jar of Skittles in exactly the same way as I handled a forty-nine year-old’s ideas about teaching middle schoolers.

Primary teachers have their pedagogy tight. Ben Spencer (my host teacher) and Sarah Kingston (an elementary math coach) were nice enough to debrief the lesson with me afterwards.

I asked them if I had left money on the table, if I had missed any opportunities to challenge and chase student thinking. They brought up an interesting debate from the end of class, a real Piagetian question about whether a different jar would change the number of Skittles. (It wouldn’t. The number of packages was fixed.) I had asked students to imagine another jar, but my hosts thought the debate demanded some manipulatives so we could test our conjectures. Nice!

Also, Spencer told me that when he asks students to talk with each other, he asks them to share out their partners’ thinking and not their own. That gives them an incentive to tune into what their partners are saying, rather than just waiting for their own turn to talk. Nice! As a secondary teacher, I felt like a champ if I asked students to talk at all. Spencer and his primary colleagues are onto some next-level conversational techniques.

Primary students have more stamina than I anticipated. No doubt much of this credit is due to the norms Mr. Spencer has set up around his “Problem Solving Fridays.” But I’ve frequently heard rules of thumb like “children can concentrate on one task for two to five minutes per year old.” These kids worked on one problem for the better part of an hour.

The pedagogy interests me more than the math.

This sentiment still holds for me after today. I just find algebra more interesting than two-digit multiplication. I’ll try to keep an open mind. Today was not an interesting day of math for me, though it was a very interesting day of learning how novices learn and talk about math.

I’m probably not wacky enough for this work. Mr. Spencer greeted his students by calling out “wopbabalubop!” to which they responded “balap bam boom!” Really fun, and I don’t think you can teach that kind of vibe.

Loads of algorithms, and none of them “standard.” Graham’s 3-Act modeling task asks students to multiply two-digit numbers. I saw an area model. I saw partial products. Students used those approaches flexibly and efficiently. They were able to locate each number in the world when asked. I didn’t see anyone carry a one. Everyone should settle down. This is great.

I expected the experience would either kill me or convince me I should have taught primary students. This one fell somewhere in the middle. I’m excited to return someday, and I was happy to witness the portability of big ideas about students, learning, and mathematics from adult education to high school to elementary school.

Featured Comment

Marilyn Burns:

I remember my first venture in elementary school after teaching ninth grade algebra and eighth grade math for four years. I was curious about younger students and my friend invited me into her third grade class. I can’t remember anything about the lesson I taught, but what I do remember is that I made a student cry. He had done something that I thought was inappropriate behavior and I must have responded pretty harshly. Hey, I was used to teaching older tough kids and I had never thought about modulating my response. It wasn’t my finest hour and I was devastated. My friend helped me through the experience and I even went back. After then I learned other ways to talk with younger students and became more and more fascinated about how they formed their conceptions . . . and misconceptions . . . about mathematical ideas. I’m hooked.