### Category: 3acts

Total 60 Posts

The speedometer in this video is broken.

Can you (or your students!?) fix it? Be careful: there are a couple of interesting ways to get this one wrong.

Also: what would the graph of speed v. time and position v. time look like here?

## The Math Problem That 1,000 Math Teachers Couldn’t Solve

I spent a year working on Dandy Candies with around 1,000 educators.

In my workshops, once I stop learning through a particular problem, either learning about mathematics or mathematics education, I move on to a new problem. In my year with Dandy Candies, there was one question that none of us solved, even in a crowd that included mathematics professors and Presidential teaching awardees. So now I’ll put that question to you.

Here is the setup.

At the start of the task, I ask teachers to eyeball the following four packages. I ask them to decide which package uses the least packaging. With the problem in this state, without dimensions or other information, lots of questions are available to us that numbers and dimensions will eventually foreclose. Teachers estimate and predict. They wonder how many unit cubes are contained in the packages. They wonder about descriptors like “least” and “packaging.”

After those questions have their moment, I tell the teachers there are 24 unit cubes inside each package. Eventually, teachers calculate that package B has the least surface area, with dimensions 6 x 2 x 2.

We then extend the problem. Is there an even better way to package 24 unit cubes in a rectangular solid than the four I have selected? It turns out there is: 4 x 3 x 2. When pressed to justify why this package is best and none better will be found, many math teachers claim that this package is the “closest to a cube” we can form given integer factors of 24. The Problem We Never Solved

We then generalize the problem further to any number of candies. I tell them that as the CEO of Dandy Candies (DANdy Candies … get it?!) I want to take any number of candies — 15, 19, 100, 120, 1,000,000, whatever —Â and use an easy, efficient algorithm to determine the package that uses the least materials.

Two solutions we reject fairly quickly:

2. Write down all the sets of dimensions that multiply to that number.
3. Calculate the packaging for that set of dimensions.
4. Write down the set that uses the least packaging.

And:

2. Have a computer do the previous work.

I need a rule of thumb. A series of steps that are intuitive and quick and that reveal the best package. And we never found one.

Here was an early suggestion.

2. Write down all of its prime factors from least to greatest.
3. If there are three or fewer prime factors, your dimensions are pretty easy to figure out.
4. If there are four or more factors, replace the two smallest factors with their product.
5. Repeat step four until you have just three factors.

This returned 4 x 3 x 2 for 24 unit candies, which is correct. It returned 4 x 5 x 5 for 100 unit candies, which is also correct. For 1,000 unit candies, though, 10 x 10 x 10 is clearly the most cube-like, but this algorithm returned 5 x 8 x 25.

One might think this was pretty dispiriting for workshop attendees. In point of fact it connected all of these attendees to each other across time and location and it connected them to the mathematical practice of “constructing viable arguments” (as the CCSS calls it) and “hypothesis wrecking” (as David Cox calls it).

These teachers would test their algorithms using known information (like 24, 100, and 1,000 above) and once they felt confident, they’d submit their algorithm to the group for critique. The group would critique the algorithm, as would I, and invariably, one algorithm would resist all of our criticism.

That group would name their algorithm (eg. “The Snowball Method” above, soon replaced by “The Rainbow Method”) and I’d take down the email address of one of the group’s members. Then I’d ask the attendees in every other workshop to critique that algorithm.

Once someone successfully critiqued the algorithm — and every single algorithm has been successfully critiqued — we emailed the author and alerted her. Subject line: RIP Your Algorithm. So now I invite the readers of this blog to do what I and all the teachers I met last year couldn’t do. Write an algorithm and show us how it would work on 24 or another number. Then check out other people’s algorithms and try to wreck them.

Featured Comment

Big ups to Addison for proposing an algorithm and then, several comments later, wrecking it.

2015 Sep 25

We’re all witnessing incredible invention in this thread. To help you test the algorithm you’re about to propose, let me summarize the different counterexamples to different rules found so far.

20 should return 5 x 2 x 2
26 should return 13 x 2 x 1
28 should return 2 x 2 x 7
68 should return 2 x 2 x 17
222 should return 37 x 3 x 2
544 should return 4 x 8 x 17
720 should return 8 x 9 x 10
747 should return 3 x 3 x 83
16,807 should give 49 x 49 x 7
54,432 should return 36 x 36 x 42
74,634 should give 6 x 7 x 1777

## Fake-World Math: When Mathematical Modeling Goes Wrong and How to Get it Right

Fake-World Math was the talk I gave for most of 2014, including at NCTM. It looks at mathematical modeling as it’s defined in the Common Core, practiced in the world of knowledge work, and maligned in print textbooks. I discuss methods for helping students become proficient at modeling and methods for helping them enjoy modeling, which are not the same set of methods.

Also, a note on process. I recorded my screen throughout the entire process of creating the talk. Then I sped it up and added some commentary.

## Graduation & What It Means To “Model With Mathematics”

This tweet from a friend of mine is one of my favorites.

My friend has taken a problem from the world that was personal to her, identified the variables that are essential to the problem, selected a model that describes those variables, performed operations on that model, and re-interpreted the result back into the world. And tweeted about it. That is modeling — the process of turning the world into math and then turning math back into the world. My friend probably wouldn’t wouldn’t label her experience like that but that’s what she’s doing. That’s what people who do math in the world do.

We know how this looks in many textbooks, though.

The amount of time (t) it takes a number of graduates (n) to cross the graduation stage can be modeled by the function t(n) = n/8. How long will it take all 288 graduates to cross the stage?

Here students would simply perform operations on real-world-flavored math while the important and interesting work is in turning the world into that math and turning that math back into the world.

Here is an alternate treatment, one that has students modeling as the practice is described in the Common Core.

Show this video.

Ask: “If I want to set an alarm that’ll let me take a long nap until just before my cousin Adarsh crosses the stage, how should I set the alarm?”

By design, it’s a short video. I’d like it to be boring enough to provoke my friend’s modeling but not terminally boring.

By design, it lacks mathematical structures because we’d like students to participate in the process of developing those structures. They won’t do that unassisted.

Before we get to the algebraic model, we can ask some important and interesting questions.

How long do you think it will take my cousin to graduate? Just estimate. These guesses interest us in a calculation and also prepare us to evaluate whether or not that calculation is correct.

Sketch the relationship between the number of graduates and time. Asking students to sketch the relationship, rather than plot it precisely, asks them to think relationally (“how do these two quantities change together?”) rather than instrumentally (“how do I plot these points?”).

Many students will assume the data is linear. But this prompt may invite some students to consider the possibility that the data is non-linear.

Collect data. Model the data. Get an answer.

Ask students to create a table of values. Ask students to plot the data in Desmos. Regress the data. Give them the graduation program. Calculate an answer.

I plotted the first ten names and modeled their times with a linear equation. (“Time v. names read” was my model, though commenter Josh thinks “time v. number of syllables read” would be more accurate.) The calculation for cousin Adarsh’s 157th name is 19 minutes. I would be foolish to rely on that calculation, however.

George Box: “All models are wrong, but some are useful.”

This is where we turn the math back into the world. This is where we make some math teachers uncomfortable, admitting that the world and the math don’t correspond exactly and that the math needs modification.

Watch all of these math teachers make exactly those modifications in the comments of the preview post. They perform mathematical operations and then proceed to describe why the results of those operations are wrong.

• Scott: “Add the bit of time prior to starting and a few seconds for a switch in readers as tends to be customary in larger groups like this … “
• Sadler: “14 minutes and 10 seconds but given that it is better to wake 10 seconds early than miss it, I would submit 14 minutes.”
• Scott #2: “You would probably want to set your timer a little earlier so you are fully awake when your cousin’s name is called.”
• Julie Wright: “As an embittered W, I am aware that there is lots of ponderous gravity for A’s and B’s, then everybody gets bored and speeds things up.” Commenter Mark Chubb, at the end of his modeling cycle: “Can’t wait to see Act 3.” Act 3 is the reveal in this task framework I call three-act math. It isn’t enough for Mark to simply read the answer in the back of the book or hear it from me. He wants to see it. So:

If you built a linear model from the first ten names, your answer winds up too large. Instead of 19 minutes, my cousin graduates at 17:12, sooner than the math predicted.

Why?

In the video, you can hear the validation of Julie Wright’s hypothesis above. The A’s and B’s get a lot of pomp, and then the commencement reader races through the rest.

Many congratulations to Megan Schmidt for her guess and to Scott and Kyle Pearce for their calculation. They all put down for 18 minutes. Special mention also to aga bey for 16.3 minutes. That commenter’s method? “I took the average of all submissions upthread.” Strong!

Again, if mathematical modeling requires the cycle of actions we find here, our textbooks typically only require one of them: performing operations. The purest mathematical action. The one that is often least interesting to students and the least useful in the world of work. So let’s offer students opportunities to experience the complete modeling cycle. Not just because those are the skills that most of the fun jobs require. But because modeling with math is fun for students now.

Featured Comment

I ran into this when working up an exponential growth problem for my son’s precalculus class. The CDC had data on the number of Ebola cases which could be modeled with an exponential growth curve at the time. However, the math needed correction because of a sudden increase in cases. The CDC readily admitted they believe the cases were unreported by a factor of 1.5 to 2.5. Thus, a human eye on the data to recognize that and make an adjustment was necessary.

Later, when the curve could be modeled nicely by a logistics curve, the equation was still incorrect in predicting the end of the epidemic. As teachers we would like to be able to button everything up and wrap it in a bow, but the real world seldom works that way.

## When Will My Cousin Graduate?

Here are three minutes of a Harvard graduation ceremony and the relevant program. My cousin Adarsh is graduating and his name is quite a ways down.

I’d like to take a nap but I’ll set a timer first so I won’t sleep through my cousin’s walk across the stage.

What time should I set the timer for?

Tell us the time and your method in the comments. The winner is whoever comes closest to the time my cousin walks across the stage, without going over.