Dan Meyer

Total 1649 Posts
I'm Dan and this is my blog. I'm a former high school math teacher and current head of teaching at Desmos. He / him. More here.

The Limits of “Just Teaching Math”

If I ever imagine that I can see the edges of teaching, if I ever tell myself that I’m apprehending all of its angles and dimensions, I just call up my friends Sarah Kingston, Ben Spencer, and Megan Snyder at Beach Elementary School and ask them if they’ll let me learn with some elementary school-aged children, an experience which corrects my vision for months.

Most recently, they let me think about time with some second graders – the youngest kids I’ve ever taught and probably ever met, I can’t be sure – and especially how to tell time on an analog clock.

My goal in these experiences is always to find areas of agreement between the teaching of different age groups and different areas of math. Whether I’m learning about time with second graders or about polynomial operations with high schoolers or about teaching with math teachers, I’m asking myself, what’s going on here that crosses all of those boundaries, not one of which is ever drawn as sharply as I first think.

One way teaching second grade is different from teaching high school.

The odds of me stepping on a child go way up, for one.

For another, these students were inexhaustible. Their default orientation towards me and my ideas was rapt engagement and an earnest, selfless desire to improve my ideas with stories about their friends, their pets, and their families.

My tools for curriculum and instruction were forged by students who communicated to me that “none of this matters” and “I can’t do it even if it did.” Those tools seemed less necessary here. Instead, I needed tools for harnessing their energy and I learned lots of them from my friends at Beach Elementary – popsicle sticks for group formation, procedures for dismissing students gradually instead of simultaneously, silent signals for agreement instead of loud ones, etc.

Even still, with these second graders, I tried to problematize conventions for telling time, just as I would with high school students. I asked students to tell me what bad thing might happen if we didn’t know how to tell time, and they told me about being late, about missing important events, about not knowing when they should fall asleep and accidentally staying awake through the night!

16 clock faces

I tried to elicit and build on their early language around time by playing a game of Polygraph: Clocks together. I told them I had picked a secret clock from that array and told them I would answer “yes” or “no” to any question they asked me. Then they played the game with each other on their computers.

One student asked if she could play the game at home, a question which my years of teaching high school students had not prepared me to hear.

One way teaching second grade is the same as teaching high school.

I saw in second grade the students I would eventually teach in high school. Students who were anxious, who shrunk from my questions, either wishing to be invisible or having been invisibilized. Other students stretched their hands up on instinct at the end of every question, having decided already that the world is their friend.

Those students weren’t handed those identities in their ninth grade orientation packets. They and their teachers have been cultivating them for years!

Rochelle Gutierrez calls teachers “identity workers,” a role I understood better after just an hour teaching young students.

All mathematics teachers are identity workers, regardless of whether they consider themselves as such or not. They contribute to the identities students construct as well as constantly reproduce what mathematics is and how people might relate to it (or not).

I have wanted not to be an identity worker, to just be a math worker, because the stakes of identity work are so high. (Far better to step on a child’s foot than to step on their sense of their own value.) We wield that power so poorly, communicating to students with certain identities at astonishingly early ages – especially our students who identify as Latinx, Black, and Indigenous – that we didn’t construct school and math class for their success.

I have wanted to give up that power over student identities and just teach math, but as Gutierrez points out, students are always learning more than math in math class.

My team and I at Desmos are forging new tools for curriculum and instruction and we’re starting to evaluate our work not just by what those tools teach students about mathematics but also by what they teach students about themselves.

It isn’t enough for students to use our tools to discover the value of mathematics. We want them to discover and feel affirmed in their own value, the value of their peers, and the value of their culture.

We’ve enlisted consultants to support us in that work. We’re developing strategic collaborations with groups who are thoughtful about the intersection of race, identity, and mathematics. A subset of the company currently participates in a book club around Zaretta Hammond’s Culturally Responsive Teaching and the Brain.

Before undertaking that work, I’d tell you that my favorite part of teaching Polygraph with second graders is how deftly it reveals the power of mathematical language. Now I’ll tell you my favorite part is how it helps students understand the power of their own language.

“Is your clock a new hour?” a second-grade student asked me about my secret clock and before answering “yes” I made sure the class heard me tell that student that they had created something very special there, a very interesting question using language that was uniquely theirs, that was uniquely valuable.

It Isn’t Enough to Love Kids or Math: My Foreword to “The Five Practices In Practice”

NB. I was honored to write the foreword to Peg Smith and Miriam Sherin’s fantastic new book The Five Practices in Practice, reprinted here with permission. Smith & Stein’s original book, 5 Practices for Orchestrating Productive Mathematics Discussion, was transformative for me professionally, but also personally, as I narrate in kind of oblique second-person fashion below. (Suffice to say: I am very much one of the two teacher types I describe.) Smith and Sherin’s follow-up book contextualizes those five practices in some extremely useful ways.

Why did you become a math teacher?

Perhaps you loved math. Perhaps you were good at math, good, at least at the thing you called math then. Friends and family would come to you for help with their homework or studying and you prided yourself not just on explaining the how of math’s operations but also the why and the when, helping others see the purpose and application behind the math.

Helping other people understand and love the math you understood and loved – perhaps that sounded like a good way to spend a few decades.

Or perhaps you loved kids. Perhaps even at a young age you were an effective caregiver, and you knew how to care for more than just another person’s tangible needs. You listened, and you made people feel listened to. You had an eye for a person’s value and power. You understood where people were in their lives and you understood how the right kind of question or observation could propel them to where they were going to be.

Spending a few decades helping people feel heard, helping them unleash and use their tremendous capacity – perhaps you thought that was a worthwhile way to spend what you thought would be the hours between 7AM and 4PM every day.

Or perhaps you loved both math and kids. It’s possible of course that neither of the two previous exemplar teachers will speak fully to the path that brought you to math teaching, although one of them speaks fully to mine. Yet, in my work with math teachers, I find they often draw their professional energy from one source or the other, from math’s ideas or its people.

It took me several frustrated years of math teaching – and years of work with other teachers – to realize that each of those energy sources is vital. Neither source is renewable without the other.

If you draw your energy only from mathematics, your students can become abstractions, and interchangeable. You can convince yourself it’s possible to influence what they know without care for who they are, that it’s possible to treat their knowledge as deficient and in need of fixing without risking negative consequences for their identity. But students know better. Most of them know what it feels like when the adult in the room positions herself as all-knowing and the students in the room as all-unknowing. A teacher’s love and understanding of mathematics won’t help when students have decided their teacher cares less about them than about numbers and variables, bar models and graphs, precise definitions and deductive arguments.

If you draw your energy only from students, then the day’s mathematics can become interchangeable with any other day’s. Some days it may feel like an act of care to skip students past mathematics they find frustrating, or to skip mathematics altogether some days. But the math you skip one day is foundational for the math another day or another year. Students will have to pay down their frustration later, only then with compound interest. Your love and care for students cannot protect them from the frustration that is often fundamental to learning.

I could tell you that the only solution to this problem of practice is to develop a love of students and a love of mathematics. I could relate any number of maxims and slogans that testify to that truth. I could perhaps convince some of you to believe me.

But the maxim I hold most closely right now is that we act ourselves into belief more often than we believe our way into action. So I encourage you more than anything right now to adopt a series of productive actions that can reshape your beliefs.

Here are five such actions: anticipate, monitor, select, sequence, and connect.

Those actions, initially proposed by Smith and Stein in 2011 and ably illustrated here with classroom videos, teacher testimony, and student work samples, can convert a teacher’s love for math into a love for students and vice versa, to act her way into a belief that math and students both matter.

For teachers who are motivated by a love of students, those five practices invite the teacher to learn more mathematics. The more math teachers know, the easier it is for them to find value in the ways their students think. Their mathematical knowledge enables them to monitor that thinking less for correctness and more for interest. Would presenting this student’s thinking provoke an interesting conversation with the class, whether the circled answer is correct or not? A teacher’s mathematical knowledge enables her to connect one student’s interesting idea to another’s. Her math knowledge helps her connect student thinking together and illustrate for the students the enormous value in their ideas.

For the teachers like me who are motivated by a love of mathematics, teachers who want students to love mathematics as well, those five practices give them a rationale for understanding their students as people. Students are not a blank screen onto which teachers can project and trace out their own knowledge. Meaning is made by the student. It isn’t transferred by the teacher. The more teachers love and want to protect interesting mathematical ideas, the more they should want to know the meaning students are making of those ideas. Those five practices have helped me connect student ideas to canonical mathematical ideas, helping students see the value of both.

Neither a love of students nor a love of mathematics can sustain the work of math education on its own. We work with “math students,” a composite of their mathematical ideas and their identities as people. The five practices for orchestrating productive mathematical discussions, and these ideas for putting those practices into practice, offer the actions that can develop and sustain the belief that both math and students matter.

You might think your path into teaching emanated from a love of mathematics, or from a love of students. But it’s the same path. It’s a wider path than you might have thought, one that offers passage to more people and more ideas than you originally thought possible. This book will help you and your students learn to walk it.

Handouts, Slides, and Recordings from #NCTMSD2019

a picture of the NCTM handout website

It’s my annual tradition to scrape all the handouts and slides from the NCTM annual conference website and put them in a more usable form and location, including a single, massive download link [2.8 GB].

But this year I also found recordings from every session.

Not video, nope.

Twitter!

People were recording the sessions on Twitter. People were in sessions the entire conference tweeting key findings, memorable phrases, and impactful slides.

Those tweets were enjoyed in the moment by people who were near their computer during the session. But every session’s tweets were mixed up with every other session’s tweets from that same time period. Then they were lost immediately afterwards to a timeline that doesn’t stop moving.

So I re-captured those tweets and attached them to every talk.

I wrote a script that copied every speaker’s Twitter handle and the time of their session from the program book. Then the script searched Twitter for their handle and “#NCTMSD2019” and – here’s the thing! – captured the results only from the time period of their session. Not during their flight to NCTM. Not during the fantastic happy hour after their session either.

So at this site you’ll see the usual listing of speakers and sessions – but you’ll also see columns that let you know a) how many attachments those speakers made available and b) how much Twitter coverage their sessions received.

an animated gif showing sorting the tables

Here’s why this is a blast. Lauren Baucom gave a dynamite talk describing her work supporting the de-tracking of her high school. No handouts or video, but here are 34 tweets to help you connect with her ideas. The same is true for loads of other presenters.

I think a lot about Jere Confrey’s statement that “students are the most underutilized resource in our schools.” Students bring value to our classes – their identities, their aspirations, their early and developing understandings of mathematical ideas – that too often goes uncelebrated, unexplored, and underutilized.

Similarly, thousands of teachers traveled at great length and great expense to San Diego last week. Thousands of brains, bodies, and souls all together in community. What did we make of that experience? What do we have to show for it? Here’s one thing and I’d like to know more.

Don’t Teach Math the “Smart Way”

Smartness and mathematics have an unhealthy relationship.

If you have been successful in math, by public consensus, you must be smart. If you have been successful in the humanities, you may also be smart but we cannot really be sure about that now can we, says public consensus.

In a world where our finest mathematical minds ruined the global economy and perpetuate unequal social outcomes, outcomes most ably critiqued by people trained in the humanities, public consensus is wrong.

A worksheet that asks students to use the 'smart way' to tell time.

This worksheet is worse.

This worksheet associates smartness with a certain way of doing math, diminishing other ways your students might develop to do the same math. Because there are lots of possible ways to tell time – some new, some old, and some not-yet-invented!

Worse, this worksheet associates smartness with a certain way of doing math that is culturally defined, diminishing entire cultures. For example, depending on your location in the world, “2/5/19” and “5/2/19” can refer to the same calendar date. Neither of those ways are “smart” or “dumb.” They work for communication or they don’t.

Try This Instead

If I’d like students to learn a certain way of doing math – whether that’s adding numbers a certain way or solving equations a certain way – I need to understand the reasons why we invented those ways of doing math and put students in a position to experience those reasons. I also need to be excited – thrilled even! – if students create or adapt their own ways of doing math when they’re having those experiences. Anything less is to diminish their creativity.

If I want students to learn how to communicate mathematically, I need to ask them to communicate.

So in this Desmos activity, one student will choose a clock and another student will ask questions to narrow 16 clocks down to 1.

I have no idea what ways students will use, create, or adapt in order to tell time. I will be excited about all of them.

I will also be excited to share with them the ways that lots of cultures use to tell time. When I share those ways, I will be honest that those ways aren’t “smart” any more than they are “moral.” They are merely what one group of people agreed upon to help them get through their day.

So I’d also offer students this Desmos activity, which tells students the time using several different cultural conventions, including the one the worksheet calls “smart” above.

Students set the clock and then they see how easy or hard it was for the class to come to consensus using that convention.

Later, we invite students to set the clock themselves and name the time using three different conventions. They make two of them true, one of them a lie, and submit the whole package to the Class Gallery where their classmates try to determine the lie.

The words we use matter. “Real world” matters. “Mistakes” matter. “Smart” matters. Those words have the power to shape student experiences, to extend or withdraw opportunities to learn, to denigrate or elevate students, their cultures, and the ideas they bring to our classes.

Defining smartness narrowly is to define “dumbness” broadly. Instead, we should seek to find smartness as often as possible in as many students as possible.

Featured Tweets

“Real-World” Math Is Everywhere or It’s Nowhere

Amare is looking at these 16 parabolas. Her partner Geoff has chosen one and she has to figure out which one by asking yes-or-no questions.

all 16 of the parabolas

There are lots of details here. She’s trying to focus on the ones that matter. The color of the parabola doesn’t seem relevant. They’re all blue. The window of the graph is the same for all the parabolas.

She focuses on the orientation of the graphs and she asks a question using the most precise words she can given her current understanding. “Is it like a hill?” she asks.

geoff responding "no" to "is it like a hill?"

Geoff answers back “No” and Amare eliminates all the “hill” graphs from consideration. So far so good.

now only 9 parabolas left

Amare is now at a loss. She knows that the graphs are different but she isn’t sure how to articulate those differences. “Is it wide?” she asks.

After a long pause, Geoff answers back “Yes.”

Amare eliminates several graphs, one of which happens to be Geoff’s graph. Their definitions of “wide” were different.

"oh no! you eliminated your partner's parabola!"

Their teacher brings the class together for a discussion of the features the students found useful in their exchanges. The teacher offers them some language mathematicians often use to describe the same graphs. Then they all return to the activity to play another round.

Modeling

Here is a diagram the GAIMME report uses to describe mathematical modeling (p. 13):

the modeling cycle from GAIMME

I contend that Amare and Geoff participated in every one of those stages.

Here is GAIMME’s definition of mathematical modeling (p. 8):

Mathematical modeling is a process that uses mathematics to represent, analyze, make predictions or otherwise provide insight into real-world phenomena.

I contend that Amare and Geoff satisfy that definition as well.

Many mathematical modelers would disagree, I suspect, given the reaction to my panel remarks last week.

Polygraph isn’t “real world.” They’re convinced it isn’t. When asked to describe how we know a student is working in the “real world” or not, though, they beg the question with adjectives like “legitimate,” authentic,” or “not mathematical” (essentially “not not ‘real world'”).

They can’t offer a definition of “real world” that categorizes the shapes that are right in front of the student right now as “not real.” They just know “real world” when they see it.

The distinction between the “real” and “not real” world doesn’t exist and insisting on it makes everyone’s job harder.

It makes the teacher’s job harder. She has to maintain two models for how students learn – one for ideas that exist in the “real world” and one for ideas that exist in the “not real world.” But they can unify those models! The tasks that mathematical modelers often enjoy and Polygraph should be taught the same way. That’d be great for teachers!

It makes the mathematical modeler’s job harder. The tasks mathematical modelers enjoy are not categorically different from Polygraph. The early ideas that teachers need to elicit, provoke, and develop in those tasks differ from Polygraph only in their degree of contextual complexity. Instead of telling teachers, “Here is how this task is similar to everything else you’ve done this year,” and benefiting from pedagogical coherence, they tell teachers, “This task is categorically different from everything else you’ve done this year and why aren’t you doing more of them?”

I’m trying to convince mathematical modelers that their process is the same one by which anyone learns anything, that they should spend much less time patrolling borders that don’t exist, and instead apply their processes to every area of the world, every last bit of which is “real.”