Posts

Comments

Get Posts by E-mail

Archive for the 'uncategorized' Category

Bryan Anderson and Joel Patterson simply subtracted elements from printed tasks, added them back in later, and watched their classrooms become more interesting places for students.

Anderson took a task from the Shell Centre and delayed all the calculation questions, making room for a lot of informal dialog first.

140926_1

Patterson took a Discovering Geometry task and removed the part where the textbook specified that the solution space ran from zero to eight.

140926_2

“It turns out that by shortening the question,” Joel Patterson said, “I opened the question up, and the kids surprised themselves and me!”

I believe EDC calls these “tail-less problems.” I call it being less helpful.

BTW. These are great task designers here. I spent the coldest winter of my life at the Shell Centre because I wanted to learn their craft. Discovering Geometry was written by friend-of-the-blog Michael Serra. This only demonstrates how unforgiving the print medium is to interesting math tasks, like asking Picasso to paint with a toilet plunger. You have to add everything at once.

I posted the following three tweets yesterday, which I need to elaborate:

“Answer-getting” sounds pejorative but it doesn’t have to be. Math is full of interesting answers to get. But what Phil Daro and others have criticized is our fixation on getting answers at the expense of understanding math. Ideally those answers (right or wrong) are means to the ends of understanding math, not the ends themselves.

In the same way, “resource-finding” isn’t necessarily pejorative. Classes need resources and we shouldn’t waste time recreating good ones. But a quick scan of a teacher’s Twitter timeline reveals lots of talk about resources that worked well for students and much less discussion overall about what it means for a resource to “work well.”

My preference here may just mean grad school has finally sunk its teeth into me but I’d rather fail trying to answer the question, “What makes a good resource good?” than succeed cribbing someone else’s good resource without understanding why it’s good.

Related

  • I felt the same way about sessions at Twitter Math Camp.
  • Kurt Lewin: “There is nothing so practical as a good theory.”
  • Without agreeing or disagreeing with these specific bullet points, everyone should have a bulleted list like this.

Featured Comment

Mr K:

This resonates strongly.

I shared a lesson with fellow teachers, and realized I had no good way to communicate what actually made the lesson powerful, and how charging in with the usual assumptions of being the explainer in chief could totally ruin it.

Really worthwhile comments from Grace Chen, Bowen Kerins, and Fawn Nguyen also.

Adrian Pumphrey:

Really, we need to literally go back to questions such as ‘Why am I teaching this?’ ‘Where does this fit into the students learning journey?’ and ‘How am I going to structure the learning so that the student wants to learn this?’ before we even think about where resources fit into our lesson. This takes a lot of time to think about and process. Time and space many teachers just don’t have.

Chris Hill:

Early on I would edit resources and end up reducing cognitive demand in the interest of making things clearer for students. Now I edit resources to remove material and increase cognitive demand. Or even more often, I’m taking bits and pieces because I have a learning goal, learning process goal and study skills goal that I have to meet with one lesson.

Kelly Stidham:

Great lessons in the context of learning around mindset and methods are the instruments we use to “do” our work. But the reflection and coaching conversations where we “learn” about our work are critical as well. Without them, we use scalpels like hammers.

But this work is much harder, much more personal, much more in the moment of the classroom. Can we harness the power of tech to share this work as well as we have to share the tools?

2014 Sep 8. Elissa Miller takes a swing at “what makes a good lesson good?” Whether or not I agree with her list is besides my point. My point is that her list is better than dozens of good resources. With a good list, she’ll find them eventually and she’ll have better odds of dodging lousy ones.

Let’s look at an example of developing the question versus rushing to the answer.

First, a video I made with the help of some workshop friends at Eanes ISD. They provided the video. I provided the tracking dots.

To develop the question you could do several things your textbook likely won’t. You could pause the video before the bicycle fades in and ask your students, “What do you think these points represent? Where are we?”

Once they see the bike you could then ask them to rank the dots from fastest to slowest.

It will likely be uncontroversial that A is the fastest. B and C are a bit of a mystery, though, loudly asking the question, “What do we mean by ‘fast’ anyway?” And D is a wild card.

I’m not looking for students to correctly invent the concepts of angular and linear velocity. They’ll likely need our help! I just need them to spend some time looking at the deep structure in these contrasting cases. That’ll prepare them for whatever explanation of linear versus angular velocity follows. The controversy will generate interest in that explanation.

Compare that to “rushing to the answer”:

140826_1lo

140826_2lo

How are you supposed to have a productive conversation about angular velocity without a) seeing motion or b) experiencing conflict?

See, we originally came up with these two different definitions of velocity (linear and angular) in order to resolve a conflict. We’ve lost that conflict in these textbook excerpts. They fail to develop the question and instead rush straight to the answer.

BTW. Would you do us all a favor? Show that video to your students and ask them to fill out this survey.

Let’s see what they say.

This is a series about “developing the question” in math class.

Featured Comment:

Bob Lochel, with a great activity that helps students feel the difference between angular and linear velocity:

I keep telling myself that I would love to try this activity with 50 kids on the football field, or even have kids consider the speed needed to make it happen.

Without some physical activity, some sense of the motion and what it is that is actually changing, then the problems become nothing more than plug and chug experiences.

Kate Nowak, on my recommendation that teachers ask for informal sketches before formal graphs:

I agree with everything you say here. However, I think you will get silent resistance on this because teachers don’t know what to do next if their students can’t sketch a graph. But they know their students can follow mechanical instructions, so they’ll fall back on that.

Waitaminit. Is that you? Is Kate talking about you? Let’s talk about this.

Let’s say you’re working on Barbie Bungee. You’re tempted to jump your students straight to the mechanics of collecting and graphing precise data but you decide to develop that question a little bit first. You ask them for a sketch and the results come back:

140821_1lo

A is (basically) correct. With zero rubber bands, Barbie falls her height and no further. Every extra rubber band adds a fixed amount to the distance she falls.

So what would you do with each of these sketches? Me, I think I’d say the same thing to each student.

BTW. Kate is back in the classroom after a short hiatus so there’s never been a better time to watch her think about teaching.

Featured Comments:

Kate Nowak:

I’d need to think about it in context of the lesson and course flow. What happened before? What was done to orient them to the problem; do they have any concrete experience of the situation or is this more like just get something down, and then what kinds of things would they be basing their response on? What were your reasons for anticipating these 4? Are these kids in Algebra 2 or 8th grade? So I have more questions than answers.

gasstationwithoutpumps:

I’m an engineering professor, not a math teacher, and my courses are built around design projects. What I’d tell the students is probably what I usually tell the students in the lab: “Try it and see!”

David Wees:

All four of these kids appear to have slightly different models for understanding how this graph relates to Barbie falling. I’m assuming that we are just asking for a rough sketch here, as per your previous post.

#1 seems to indicate some important understandings of the relationship between the two variables. It is hard to come up with that graph by accident. My feedback to this kid would be to ask her what else could be modeled with this graph.

#2 seems to know that the more rubber bands there are, the longer the distance is. This is a pretty key understanding. I am curious about why they chose to start their graph at the origin, and I would ask them to explain their reasoning behind their creation of this graph. Either they will notice their mistake themselves, or I will have more information with which to ask a better question. One possible response would be to ask kid #2 and kid #3 to justify their graphs and defend them.

#3 seems to be confusing the graph as a map of the actual fall itself, but there could be other explanations for their choice of graph. For example, they could be interpreting distance fallen as just distance, in which case they might be thinking that this means the distance from the ground. I need more information about their thinking, and so I would ask them to explain to me what they have done, and then depending on their response, I ask another question.

#4 did not do the question. There are many reasons why this could be true. They could not be able to read, they could not have a starting place for figuring this out, they could be unwilling to make a mistake, they could be still thinking about the problem by the time I get near them, and more. I need to know more information. Is this a typical pattern from this student? Have they produced similar graphs in the past? What socio-emotional concerns do I need to be aware of? Based on my understandings of these questions, I would ask a question like “Can you explain to me what the problem is asking?” Ideally I have already spent enough time clarifying the problem before everyone started that this particular question will not give me much information (eg. the student does know how to explain the problem) and I will likely need to ask another question. Maybe I need to ask them to describe the relationship between rubber bands and falling bands in words first.

Denis Roarty:

My second reaction, when I read a few of the Barbie PDFs is that these things are so longgg …. I was a middle school science teacher and my ideal worksheet was a one pager. We did a lot of context building by talking through the prompt, what we needed to know and the experimental design. I didn’t always pull it off well, but I also didn’t have kids mechanically following my directions.

This is a series about “developing the question” in math class.

This is a series about “developing the question” in math class.

Here is a resolution: ask your students for a sketch first.

I’ve been a bit obsessed with “Barbie Bungee,” a lesson on linear regression which you’ll find all over the Internet. It’s the kind of lesson that doesn’t seem to have any original mother or father, only descendants. (Here is NCTM’s version as well as a video from the Teaching Channel.)

Search the Internet for “Barbie Bungee handouts. I have. Invariably, the handout asks students to collect data for how far Barbie falls given a number of rubber bands tied around her ankles and then graph the results precisely. Often times those handouts include a blank graph with precise units and labeled axes.

140818_1lo

Developing the question means starting from a more informal place. It means asking the students, “What do you think the relationship looks like between the number of rubber bands and Barbie’s distance? Sketch it.”

140818_2lo

Asking students to sketch the graph serves so many useful purposes.

  • It helps us clarify assumptions. What do we mean by “distance”? Barbie’s distance off the ground? The distance Barbie has fallen?
  • Predicting the relationship makes it easier to answer questions about it later. This is from Lisa Kasmer’s research. It’s productive for students to decide if they think the relationship is linear, constant, increasing, decreasing, etc. What is its general shape? How do these quantities covary? As rubber bands increase, what happens to distance? Later, when students start to graph data precisely, the fact that the shape of their data matches their sketch will help confirm their results.
  • It’s great formative assessment. Do your students even know what a graph represents? Find out by asking for a sketch. If they can’t sketch a graph, their later precise graphing is likely only going to be mechanical and instrumental. (ie. “First number right, second number up.”)
  • Comparing informal sketches, which may vary widely, will likely make for better debate than comparing precise graphs, which will largely look the same. And controversy generates interest.

Which would make for a more interesting classroom debate? These three precise graphs?

140818_5

Or these three imprecise sketches?

140818_4

If the answer is “make a precise graph of a real-world relationship,” then developing the question means asking for a sketch first. That’s my resolution.

Next »