Posts

Comments

Get Posts by E-mail

Archive for the 'tech enthusiasm' Category

tl;dr – This is about a new digital lesson I made with Christopher Danielson and our friends at Desmos. It's called Waterline and its best feature is that it shares data from student to student rather than just from student to teacher. I'll show you what I mean while simultaneously badgering publishers of digital textbooks. (As I do.)

Think about the stretches of time when your smartphone or tablet is in airplane mode.

Without any connection to the Internet, you can read articles you've saved but you can't visit any links inside those articles. You can't text your friends. You can't share photos of cats wearing mittens or tweet your funny thoughts to anybody.

In airplane mode, your phone is worth less. You paid for the wireless antenna in your tablet. Perhaps you're paying for an extra data plan. Airplane mode shuts both of them down and dials the return on those investments down to zero.

Airplane mode sucks.

Most digital textbooks are in airplane mode:

  • Textbooks authored in Apple's iBooks Author don't send data from the student's iPad anywhere else. Not to her teacher and not to other students.
  • HMH Fuse includes some basic student response functionality, sending data from the student to the teacher, but not between students.
  • In the Los Angeles Unified iPad rollout, administrators were surprised to find that "300 students at three high schools almost immediately removed security filters so they could freely browse the Internet." Well of course they did. Airplane mode sucks.

The prize I'm chasing is curriculum where students share with other students, where I see your thoughts and you see mine and we both become smarter and life becomes more interesting because of that interaction. That's how the rest of the Internet works because the Internet is out of airplane mode.

Here's one example. In Waterline we ask students first to draw the height of the water in a glass against time. We echo their graph back to them in the same way we did in Function Carnival.

140416_1

But then we ask the students to create their own glass.

140416_2

Once they successfully draw the graph of their own glass, they get to put it in the class cupboard.

140416_3

Now they see their glass in a cupboard right alongside glasses invented by their friends. They can click on those new glasses and graph them. The teacher sees all of this from her dashboard. Everyone can see which glasses are harder to graph and which are easier, setting up a useful conversation later about why.

We piloted this lesson in a local school and asked them what their favorite part of the lesson was. This creating and sharing feature was the consensus winner.

A selection:

  • Making my own because it was my own.
  • Trying to create your own glass because you can make it into any size you want.
  • Designing my own glass because I was able to experiment and see how different shapes of the glass affects how fast the glass filled up.
  • My favorite part of the activity was making my own glass and making my other peers and try and estimate my glass.
  • My favorite part of the activity was solving other people's glasses because some were weird shapes and I wanted to challenge myself.

Jere Confrey claimed in her NCSM session that "students are our most underutilized resource in schools." I'd like to know exactly what she meant by that very tweetable quotation, but I think I see it in the student who said, "I also liked trying out other's glasses because we could see other's glasses and see how other people solved the problem."

I know we aren't suffering from too many interactions like that in our digital curricula. They're hard to create and they're hard to find. I also know we won't get more of them until teachers and administrators like you ask publishers more often to take their textbooks out of airplane mode.

David Cox sent his students through Function Carnival where they tried to graph the motion of different carnival rides. (Try it!)

Every student's initial graph was wrong. No one got it exactly right the first time. But Function Carnival doesn't display a percent score or hint tokens or some kind of Bayesian probability they'll get the next graph right. It just shows students what their graph means for that ride. Then it lets them revise.

David Cox screen-recorded the teacher view of all his students' graphs. This is the result. I love it.

BTW. I'm hardly unbiased here, having played a supporting role in the development of Function Carnival.

Today Desmos is releasing Function Carnival, an online math happytime we spent several months developing in collaboration with Christopher Danielson. Christopher and I drafted an announcement over at Desmos which summarizes some research on function misconceptions and details our efforts at addressing them. I hope you'll read it but I don't want to recap it here.

Instead, I'd like to be explicit about three claims we're making about online math education with Function Carnival.

1. We can ask students to do lots more than fill in blanks and select from multiple choices.

Currently, students select from a very limited buffet line of experiences when they try to learn math online. They watch videos. They answer questions about what they watched in the videos. If the answer is a real number, they're asked to fill in a blank. If the answer is less structured than a real number, we often turn to multiple choice items. If the answer is something even less structured, something like an argument or a conjecture … well … students don't really do those kinds of things when they learn math online, do they?

With Function Carnival, we ask students to graph something they see, to draw a graph by clicking with their mouse or tapping with their finger.

We also ask students to make arguments about incorrect graphs.

I'd like to know another online math curriculum that assigns students the tasks of drawing graphs and arguing about them. I'm sure it exists. I'm sure it isn't common.

2. We can give students more useful feedback than "right/wrong" with structured hints.

Currently, students submit an answer and they're told if it's right or wrong. If it's wrong, they're given an algorithmically generated hint (the computer recognizes you probably got your answer by multiplying by a fraction instead of by its reciprocal and suggests you check that) or they're shown one step at a time of a worked example ("Here's the first step for solving a proportion. Do you want another?").

This is fine to a certain extent. The answers to many mathematical questions are either right or wrong and worked examples can be helpful. But a lot of math questions have many correct answers with many ways to find those answers and many better ways to help students with wrong answers than by showing them steps from a worked example.

For example, with Function Carnival, when students draw an incorrect graph, we don't tell them they're right or wrong, though that'd be pretty simple. Instead, we echo their graph back at them. We bring in a second cannon man that floats along with their graph and they watch the difference between their cannon man and the target cannon man. Echoing. (Or "recursive feedback" to use Okita and Schwartz's term.)

When I taught with Function Carnival in two San Jose classrooms, the result was students who would iterate and refine their graphs and often experience useful realizations along the way that made future graphs easier to draw.

3. We can give teachers better feedback than columns filled with percentages and colors.

Our goal here isn't to distill student learning into percentages and colors but to empower teachers with good data that help them remediate student misconceptions during class and orchestrate productive mathematical discussions at the end of class. So we take in all these student graphs and instead of calculating a best-fit score and allowing teachers to sort it, we built filters for common misconceptions. We can quickly show a teacher which students evoke those misconceptions about function graphs and then suggest conversation starters.

A bonus claim to play us out:

4. This stuff is really hard to do well.

Maybe capturing 50% the quality of our best brick-and-mortar classrooms at 25% the cost and offering it to 10,000% more people will win the day. Before we reach that point, though, let's put together some existence proofs of online math activities that capture more quality, if also at greater cost. Let's run hard and bury a shoulder in the mushy boundary of what we call online math education, then back up a few feet and explore the territory we just revealed. Function Carnival is our contribution today.

I updated 101questions today to include a single major new feature: a lesson editor.

130319_1

Creating webpages like this soaks up too much of my time. I have to upload files in three different places. Changing a single word in the lesson means firing up an FTP client. Changing anything about an image takes ten minutes at least. None of this is creative work.

So I put together the task editor I want to use. You can add supporting materials — photos, videos, questions, teacher notes, student notes, links, and more. You can re-order them quickly, all from the browser. More fun is that other users can download them quickly. Click the "Download" button and Internet pixies will zip all the resources up and send the file to your computer.

130319_2

I've been using it for a couple of weeks and I'd like you to use it also.

I've added other features some of you have asked for:

Better tagging.

You can add tags like "pizza" or "basketball" or "money." You can type a few key mathematical terms into the Common Core search bar and it will locate standards for you. Of course, all of this will make the search engine much smarter.

130319_3

A smarter search engine.

People e-mail now and then telling me in kind terms how awful this spreadsheet is. I'm in total agreement. Unless you're fluent in Common Core shorthand, it's impossible to find tomorrow's topic today. So now you can head to my page on 101questions, click Search, and then click "Search this user." Type in what you're looking for. Click "Has lesson" to narrow down my material to everything that's been a little more developed. Click the grade boxes to tighten the results down even more.

130319_4

Try it out. Add some tags to your old material. Leave me some comments here. I'll need as much useful criticism as you can offer. Let's make this great together.

a/k/a Dave Major Goes Bananas

Shorter: Dave Major and I are experimenting again with what math textbooks could look like on devices that are digital and networked. Our most recent experiment is Ice Cream Stand.

Longer: Last September, Kate posted this image to Twitter attached to the tweet, "Worst geometry problem ever: can't be solved until after you solve it."

Clever bit, right? Classic Kate.

We could print that out and have students use a compass and straightedge to construct the circumcenter (the point that's equidistant from all three coffee shops). That'd be a fine summative assessment. Very "real world," etc.

But if you'd like to use Kate's tweet to motivate the need for the circumcenter, to give students a reason to care about the circumcenter, we'll need to start much lower on the ladder of abstraction. We'll need to throw out formal vocabulary and formal operations for a few minutes. We'll need to start with intuition.

So we changed the domain from coffee to ice cream. We changed the environment from a roadway (a complicated space) to a park (an open space). And we gave students a few easy choices. "Which ice cream stand would you pick, given where you're standing right now?"

130318_1

Students see that they're basically painting the field one dot at a time.

130318_2

So we ask them to extend that metaphor and paint the entire field so that someone else can see which stand is the closest no matter where they are in the park.

130318_3

This is a task that a lot of students can complete regardless of their mathematical knowledge. It's expensive, but not impossible, to provide this task on paper. It's impossible to do on paper what comes next.

We combine the entire class' park paintings.

130318_4

That's a composite from three dozen people on Twitter.

Dave and I then asked students for some preliminary thoughts about how we could calculate the right painting. But that's where we finished. The point is, students now want to know, "Who's right? Who's closest?" And what's weird is that our intuition validates the math to a degree.

That is to say, you can see areas where Twitter agreed with itself. You can see areas where Twitter disagreed with itself. When you construct the circumcenter from the perpendicular bisectors, you'll find that they overlay rather neatly on the areas of disagreement.

130318_5

That's the ladder of abstraction. It isn't impossible to climb it with print-based tasks, but a digital networked device makes it a lot easier.

Open Questions

  • Q: Where does this activity go next? We could add some expository text about the circumcenter. We could leave that to the teacher. We could calculate which student took the best guess in her painting of the field. A huge open question throughout these projects is, "What role does the teacher play here?"
  • Q: Another huge, open question is, "What happens to the first student who runs through this activity?" Her composite painting is just her own painting. Dave and I are developing activities that exploit the network effect. They get better and more interesting when more students use them. So again: what happens to the first student through?

BTW. Dave Major wrote his own post about this project.

Featured Comments

Alexandre Muniz:

The burning question I have after looking at this is, why is the average line a bit wrong? (Especially the blue/green line.)

Evan Weinberg:

The line of uncertainty shows where the intuitive power of the brain breaks down. This is where the power of mathematical tools can step in to hone in on a more precise answer. What strikes me here is that the mathematical tools don’t do that much better of a job.

Jason Dyer:

If you allow the first student through to see the picture as it gets revised (via a reload button or some auto-update), I don’t see a terrible problem (except for the usual classroom dilemma of what you do with any student that finishes fast).

Next »