Category: contest

Total 43 Posts

Announcing The Winner Of Our Fall Contest

I received about one hundred loop-de-loops from teachers, parents, and students from several different countries. It took me an hour to take in all the awesome eye candy, which included dioramas, videos, 3D loop-de-loops made from snap cubes, and more. I pulled out my five favorites and sent them to three judges who I think embody the best of creativity in mathematics.

The Judges

  • Malke Rosenfeld, who uses dance and choreography to explore mathematical thinking.
  • George Hart, a research mathematician who also sculpts using geometry as his medium.
  • Michael Serra, author of Discovering Geometry, a geometry textbook infused from the front cover to the back with Michael’s love for math and art.

Five Finalists

Autumn, from Angela Ensminger’s class:

151012_4

Theo, from Alice Hsiao’s class:

151012_3

Trish Kreb’s seventh grade student:

151012_2

John Grade & his daughter:

151012_1

Maddie Bordelon and her math art team, “Right Up Left Down”:

151012_5

[BTW. In an early draft of this post, I reversed the second and third prize winners. Mistakes were made. Apologies have been issued.]

Third Prize

Third prize, which is a medium-intensity high five delivered if we ever meet, and one copy of Weltman’s book, goes to Maddie Bordelon and her math art team, “Right Up Left Down.”

151012_5

Second Prize

Second prize, which is sustained applause in a crowded, quiet room, and five copies of Weltman’s book, goes to Theo from Alice Hsiao’s class:

151012_3

One judge wrote:

[E] completely holds my attention. The coloring choices pull me in and highlight the patterns and structure in a way that fascinates me. The long bands of white, blue and grey make a fantastic contrast to the brighter colors closer to the middle, which are also the shorter segments in the design. And, the bold outlines pull out the structure even more. I don’t know if it was intentional, but the overall effect of hand-coloring plus scanning the image made for a lovely final effect.

First Prize

First prize, which is 40 copies of Anna Weltman’s awesome book, goes to John Grade & his daughter.

[2015 Oct 12. John Grade is graciously passing his first prize down to the second prize winner.]

151012_1

Our judges wrote about John Grade’s loop-de-loop:

It is very well constructed, brilliant use of color, and the number pattern chosen is pretty special.

A nice experiment to try Pi and see if a visible pattern emerges.

Congratulations, everybody.

Honorable Mention

I loved seeing students conjecturing mathematically about loop-de-loops, asking each other which ones converge and diverge, trying to predict the patterns they’d find in different strings of numbers. (See: Denise Gaskin’s comment for one example.)

Also, The Nerdery really sank its teeth into this assignment. This blog’s collection of programmer-types produced some great loop-de-loop visualizations:

Our Fall Contest & This Is Not A Math Book

2015 Oct 14. Announcing the winners.

150928_1

You should buy Anna Weltman’s new math book, This is not a Math Book.

You should buy several, probably, for all the little people in your life who are deciding right now what they think about math and what math thinks about them. If they’re taking their cues on that decision from someone who dislikes math or who dislikes little people, consider using This is not a Math Book for counterweight.

You’ll find dozens of pages of math art, math sketches, math reasoning, and math whimsy. I read it in one sitting outside a coffee shop one afternoon, big dumb smile on my face the whole time. Actually finishing the book, fully participating in Weltman’s assignments of creativity and invention, will take many more afternoons.

I’d like to send one of you a class set of Weltman’s book. Here is how you get it:

  • I love Weltman’s Loop-de-Loop assignment. It lends itself to some of my favorite mental mathematical acts around prediction, sequencing, transformation, and questions like “what if?” So you or your students or all of the above should make an awesome Loop-de-Loop. (Here is Weltman’s instruction page and her student work page, but any piece of graph paper will work.)
  • Scan and send it to ddmeyer+loop@gmail.com.
  • I’ll pick my five favorites and ask some of my favorite math artist friends to pick the winner from those five. Winner takes all, which is to say 40 copies of This is not a Math Book, from me to you.
  • Contest ends 10/6 at 11:59 PM Pacific Time.

Drawings, color, character work, mixed media, it’s all fair game. I can’t wait.

BTW. Over the next several days, Weltman is blogging interesting questions to ask your students about Loop-de-Loops.

Featured Tweets

Yes, do that!

Yes, do that!

Got your back.

The Do You Know Blue Student Prizewinner

Rebecca Christainsen had the highest score of any student on our Do You Know Blue machine learning activity. Yesterday was her last day of school at Terman Middle School in Palo Alto, CA, so Evan Weinberg, Dave Major, and I sent her math class a pizza party in her honor.

Because we’re keeping the activity available for you and your students to use as they study inequalities, we aren’t going to go into much depth on all the different rules contestants used. But I asked Rebecca how she came to her final, game-winning rule, and she told all:

My teacher first showed me the website, and I decided to try it out. My first attempt scored me only around 18%, but since hardly anyone had tried it out yet, I was ranked 33rd. After that, I was encouraged to try more equations, and suddenly thought of all the different types of equations that I could use, and moved to squared terms. One of the first equations that I came up with was b2>r2+g2. I simply used trial and error to come up with new equations, and I recorded each equation that I used and the percentage. I combined different equations together, and a few different combinations even had the same percentage.

Nobody beat that.

Extra Credit: How many of the Standards of Mathematical Practice does Rebecca evoke in that quote?

Great Lessons: Evan Weinberg’s “Do You Know Blue?”

If you and I have had a conversation about math education in the last month, it’s likely I’ve taken you by the collar, stared straight at you, and said, “Can I tell you about the math lesson that has me most excited right now?”

There was probably some spittle involved.

Evan Weinberg posted “(Students) Thinking Like Computer Scientists” a month ago and the lesson idea haunted me since. It realizes the promise of digital, networked math curricula as well as anything else I can point to. If math textbooks have a digital future, you’re looking at a piece of it in Evan’s post.

Evan’s idea basically demanded a full-scale Internetization so I spent the next month conspiring with Evan and Dave Major to put the lesson online where anybody could use it.

That’s Do You Know Blue?

Five Reasons To Love This Lesson

It’s so easy to start. While most modeling lessons begin by throwing information and formulas and dense blocks of text at students, Evan’s task begins with the concise, enticing, intuitive question “Is this blue?” That’s the power of a digital math curriculum. The abstraction can just wait a minute. We’ll eventually arrive at all those equations and tables and data but we don’t have to start with them.

Students embed their own data in the problem. By judging ten colors at the start of the task, students are supplying the data they’ll try to model later. That’s fun.

It’s a bridge from math to computer science. Students get a chance to write algorithms in a language understood by both mathematicians and the computer scientists. It’s analogous to the Netflix Prize for grown-up computer scientists.

It’s scaffolded. I won’t say we got the scaffolds exactly right, but we asked students to try two tasks in between voting on “blueness” and constructing a rule.

  1. They try to create a target color from RGB values. We didn’t want to assume students were all familiar with the decomposition of colors into red, green, and blue values. So we gave them something to play with.
  2. They guess, based on RGB values, if a color will be blue. This was instructive for me. It was obvious to me that a big number for blue and and little numbers for red and green would result in a blue color. I learned some other, more subtle combinations on this particular scaffold.

This is the modeling cycle. Modeling is often a cycle. You take the world, turn it into math, then you check the math against the world. In that validation step, if the world disagrees with your model, you cycle back and formulate a new model.

160518_3

My three-act tasks rarely invoke the cycle, in contrast to Evan’s task. You model once, you see the answer, and then you discuss sources of error. But Evan’s activity requires the full cycle. You submit your first rule and it matches only 40% of the test data, so you cycle back, peer harder at the data, make a sharper observation, and then try a new model.

The contest is running for another five days. The top-ranked student, Rebecca Christainsen, has a rule that correctly predicts the blueness of 2,309 out of 2,594 colors for an overall accuracy of 89%. That’s awesome but not untouchable. Get on it. Get your students on it.